NOTES ON ACARI
 THIRD SERIES ${ }^{1}$)

Dr. A. C. OUDEMANS

(With Plates I-III).

1. Acari of unknown comntries.

In the Tijdschrift voor Entomologie, vol. 39, p. 192, I mentioned that Dr. A. W. M. van Hasselt presented me (in 1878) with an Amblyomma, the locality of which was not noted down. Prof. G. Neumann of Toulouse recognized it as a Hyalomma affine Nn. σ^{\top}.

Again, on p. 193 of the same volume mention was made of a Hyalomma of unknown locality. With Neumans's valuable work I have easily determined it as a Rhipicephalus sanguineus Latr. \odot.

2. Acari of Sumatra.

In the Tijdschrift voor Entomologie, vol. 39, p. 137, I mentioned that in February 1882, Mr. J. A. van den Brink, of Utrecht, presented me with several specimens of a Laelaps found by him on a large beetle, related to Oryctes, of Sumatra, and that this species bore so striking a resemblance to that which I had found on a Putorius erminea at Sneek (Netherlands) the preceding year,

[^0]that I could wot observe any difference between them. Indeed I have examined the insects carefully; they are of the same species, viz. Laelaps celeripediformis Oudms., described by me in the Tijdschrift voor Entomologie. (This description may not appear before the year 1902). So the geographical distribution of this species is wide. The beetle was caught during the Sumatra-Expedition of 1877.

On p. 193 of the same volume of the above-mentioned Tijdschrift I noted the receipt of a species of Rhipistoma from Mr. Snelleman (Sumatra-Expedition of 1877). Prof. G. Nbumann, of Toulouse, recognized them to be Haemaphysalis leachi (Andouin), 20^{7}. They were found on Felis tigris L.

On the same page I mentioned two kinds of Rhipicephalus, found on Bos bubalus in Sumatra (Expedition of 1877). Prof. G. Neumann determined them as Rhipicephalus annulatus caudatus Nu. 0^{7} and Haemaphysalis cornigera Nn. © ${ }^{7}$.

3. Acari of Italy.

In the Tijdschrift voor Entomologie, vol. 39, p. 137, I noted that Dr. Everts presented me with a Laelaps sp. of Naples. These insects are Macrocheles marginatus (Herm.), viz. a tritonympha homoiomorpha feminina and an adult female. They are of 1879.

Mr. S. A. Poppe, of Vegesack, sent me a tube with Acari found on a Rhinolophus ferrum equinum, at Triest, 27, I, 1898. They all belonged to one species, which is new to science, and which I will call Liponyssus rhinolophi Oudms., nov. sp. (see below).

4. Acari of Cochin China.

In 1879 Dr. Henri W. de Graaf presented me with two Amblyomma found on a kind of Testudo in Cochin China. See the Tijdsehrift voor Entomologie, vol. 39, p. 192. Prof. G. Neumann, of Toulouse, kindly determined them as Hyalomma afine Nn. O'.

5. Acari of Java.

The Uropoda, mentioned in the Tijdschrift voor Entomologie, vol. 39, p. 137, and found by me in a bale of kětan, a kind of rice, arrived in April 1880 from Java, has not yet been described. I will call it Uropoda javensis Oudms., nov. sp. (see below). The »other Acari", found together with this new species in kětan, were Tyroglyphus siro Latr., Glycyphagus domesticus (de Geer) and Cheyletus eruditus (Schrank).

On the same page, mentioned above, I wrote: »I received a big species, nearly a line in length and three quarters of a line in breadth, from my brother, Mr. G. J. Oudemans, of Temangoeng, in the province of Kèdoe, Java, in June 1883." To-day, April 16, 1891, examining the mite, I discovered it to be Greenia perkinsi Oudms., nov. gen., nov. sp. (see below), which I had already found in the acarid-chamber of Xylocopa (Koptorthosoma) tenuiscapa Westw. in November of last year. I immediately asked my brother, if he recollected having found, in 1883, a big mite within the abdomen of a big, black wood-bee. By postcard of May 17, he wrote to say that he did not.

On the same page, mentioned above, I noted the receipt of another mite sent to me by my brother. As it is new to science I will call it Neoparasitus oudemansi Oudms., nov. gen., nov. sp. (see below).

In March 1895 I found on a Triglyphodon dendrophilum, a snake of Java, a few specimens of 1xodidae, which I determined (see Tijdschrift voor Entomologie, vol. 39, p. 192 and 193) as Amblyomma helvolum C. L. Koch. I then thought Amblyomina decoratum C. L. Koch the σ^{7} of helvolum, because my O resembled helvolum and my σ^{\top} decoratum. Prof. Neumann, of Toulouse, does not share my opinion. He considers A. helvolum, A. decoratum and the species found by me different from one another, only thinking it probable that the new species (A. quadrimaculatum Nn.) may be a variety of decoratum. As I had treated my females with caustic kali and picrocarmin in order to study the exoskeleton,

Prof. Neumann describes only the ot (Mémoires de la Société Zoologique de France, 1899, p. 245 et 278).

Mr. S. A. Poppe, of Vegesack, sent me a tube with Acari, found by Prof. K. Knoth in the acarid-chamber of Xylocopa (Koptorthosoma) tenuiscapa Westw. of Java, XII, 1898. There were 4 species, viz:

Glycyphagus ornatus Kram.
Hypopus minutus Oudms., nov. sp. (see below).
Greenia perkinsi Oudms., nov. sp. (see below).
Trichotarsus koptorthosomae Oudms., nov. sp. (see below).
Remark: The presence of Glycyphagus ornatus Kram. in the acaridchamber is most probably a proof, that Prof. K. Knuth examined a specimen of Xylocopa, which was preserved dry for a long time in a collection of Hymenoptera.

Dr. Kohlbrugge of Buitenzorg (now at Utrecht) presented me with 6 nymphae, $24 \sigma^{\tau}$ and 69 of an Amblyomma, caught in 1889 on Manis javanica Desm. in Java. Prof. Neumann, of Toulouse, determined them as Amblyomma badium Nn.

In July 1900 I myself received a Heliocopris bucephalus with mites of Java. I found on it the following species:

Pachylaelaps ctenophorus Oudms., nov. sp.
Pachylaelaps minutus Oudms., nov. sp.
Cillibano heliocopridis Oudms., nov. sp.
Tyroglyphus trifolium Oudms., nov. sp.

6. Neoparasitus Oudms., nov. gen.

Neoparasitus is nearest related to Hydrogamasus Berl., differing, however, from it in the narrow ventri-anal shield of the female; in the singular form of the ventri-anal shield of the male; in the single jugular shields; and in the absence of accessory claws. Neoparasitus lives free among decaying leaves.

7. Neoparasitus oudemansi Oudms., nov. sp.

(With Plate I, fig. l-9)
Named after my brother, Mr. G. J. Oudemans, Assistent-Resident of Kědoe, Java, who sent me a female in 1883.

Length of $\widehat{\gamma}^{7} 2125 \mu$; of \bigcirc varying from 1750 to 2050μ.
Colour very dark brown.
Male. Dorsal side covered with one shield, as in Hydrogamasus. The hairs on the dorsum are distributed as in the $\%$ (Fig. 1); they are, however, much stronger. The hairs on the centre of the back are much smaller than those of the margins.

The most remarkable features of the ventral side (Fig. 2) are the following. There are two narrow jugular shields. The genital aperture is sunk in an incision of the sternal shield, a position which is intermediate between the two common types. The sternigenital shield is very broad between the coxae 2 and 3, very narrow between the coxae 4 . It bears 8 bristles. Between the coxae 4 it shows two lighter spots lying side by side, and two almost black chitinizations in the mediau line. The ventri-anal shield looks as if it were simply a fusion of a distinct ventral and a distinct anal one. The anterior margin of the ventral portion is in the middle and on the sides elegantly curved forward. The ring in which the $4^{\text {th }}$ leg fits is strongly chitinized on its hind- and side-edges. The ventral portion has, like the genital shield, an almost black internal chitinization in the median line.

The epistoma is like that of the q (Fig. 1 and 3).
The hypostoma resembles that of the Q (Fig. 4).
The chelae are stronger (Fig. 3, 5, 6), especially the movable finger. The latter bears on its outer side distally a long curved sporn or copulation-organ. This is directed first upward and backward, then it is curved inward, so that both organs of each mandible meet in the median line; then they are curved downward and finally forward again. Fig. 3 represents the insect's head (capitulum or pseudo-capitulum) with epistoma, maxillar palps and the two mandibles with their copulation-organ. Fig. 5 represents the left mandible as seen from the left (outer) side, and Fig. 6 the right mandible seen from the left (inner) side.

Legs. The femur of the 2nd leg (Fig. 7) bears on its ventral side a thumb-like sporn; the genu and the tibia a smaller process; the tarsus has a knob half-way, and a pin on its distal end. The
trochanter 3 and 4 bear distally a sharp prick on the dorsal (anterior) side (Fig. 2); the femur 4 two such spines ventrally (posteriorly).

Female. Fig. 1 shows us the general aspect of a female; the male has thicker legs 2. The dorsal side (Fig. 1) has been described above.

The ventral side (Fig. 8) is characterized by its nearly hexagonal sternal shield, by its genital shield being rounded anteriorly, truncated posteriorly, and by its elongate ventri-anal shield. There are two minute metapodial shields. The ring in which the leg 4 fits, is exactly like that in the male.

Epistoma and hypostoma like those of the male (Fig. 1, 3 and 4).
Mandibles (Fig. 9). Fixed finger with long cheek-tooth, strong dog-tooth, two very small incisors and one strong one. Sense-organ distinct. Movable finger with one dog-tooth and one incisor.

All that may be said of the legs is shown in Fig. 1. Legs 1 and 4 somewhat longer than the body. Leg 2 the shortest and thickest. Trochanter 3 and 4 with distal dorsal (anterior) spine.

Habitat: decaying leaves.
Patria: Java, Borneo.

8. Pachylaelaps ctenophorus Oudms., nov. sp.

(With Plate I, fig. $10-12$)
Nympha generans feminina. Length 1330μ. Colour a brownishyellow. General aspect (Fig. 10) like that of Pachylaelaps siculus Berl. nympha generans feminina, with the following differences though: 1. The apex is pointed and bears two bristles. 2. The hairs on the dorsum are half or a third their size, except those on the shoulders, which are stronger. 3. The insect is larger, measuring 1330μ., whilst the nympha generans feminina of Pachylaelaps siculus Berl. is only 875μ. in length.

Ventral side (Fig. 11). The great difference lies in the form of the genital and anal shields. The genital shield is subtrapezoidal, with rounded anterior and posterior margins, and concave sides, resembling a church-bell. Its posterior margin lies in the
same curve as the outer margins of the fused lateral and metapodial shields: The anal shield is small, much narrower than the genital shield,

The epistoma is of the common type.
The hypostoma has two horns which have half the size of those of P. siculus Berl. The inner malae form a long feathered spine.

The mandible (Fig. 12) is provided with three teeth on each finger, the cheek- and canine-teeth directed somewhat backward; the upper incisor large, projecting beyond the lower one.

Habitat: Heliocopris bucephalus.
Patria: Java.
9. Pachylaelaps minutus Oudms., nov. sp.
(With Plate I, fig. 13-16, 18-19, 21-25, Plate II, fig. 17, 20, 26-29)
The species was found by me on Heliocopris bucephalus, one of the most common beetles (Copridae) of Java. Nymphs, males and females were present.

Nymph (Fig. 13). The nymph is a real nymph, without genital characters. Its length is about 420μ. ; its shape somewhat oval, its length twice its breadth, it is somewhat shouldered, and has nearly parallel sides. The colour is that of the known species of Pachylaelaps, a brighter yellow than of Parasitus coleoptratorum and others. The ventral side (Fig. 14) is characterized by the following particnlars. The sternal shield is anteriorly prolonged by a piece, intercalated between it and the capitulum. I will call this piece a praesternal shield. It bears the small mentum on its anterior edge. The sternal shield itself bears 8 hairs, and its hind-half, comparable to a genital shield, two little hairs. The part between the coxae 4 is narrow. There is a subquadrangular anal shield, two very elongate lateral shields with the peritremata, and two small metapodial shields. The epistoma (Fig. 15) ends in a semicircular denticulated comb; the middle and a lateral tooth twice the length of the others. The hypostoma (Fig. 16) is typical. The bases of the maxillae are coa-
lesced without visible suture. The corniculae hypostomatis or exterior malae are normal. The interior, however, long, filiform. The legs are slender, those of the first pair as long as the body; the others shorter, scarcely longer than the breadth of the body.

Male. Length about 450μ. Shape (Fig. 17); well shouldered, broadest at the shoulders, tapering rapidly toward the apex, with a second indication of a shoulder near the first pair of legs, and tapering very slowly toward the posterior end of the abdomen. Behind the shoulders the side is somewhat concave. The colour is that usually shown by Pachylaelaps. The dorsal shield shows exactly the same distribution of hairs as that in the nymph. The shields of the ventral side (Fig. 18) have all coalesced. The sternal part projects forward and ventrally with an undulated edge, so that the mentum is situated between this prolongation aud the jugular region. The epistoma (Fig. 19) differs from that of the nympb, as the comb is placed immediately on the base, which has a denticulated edge and therefore strongly reminds us of that of the genus Macrocheles. The hypostoma (Fig. 20) differs greatly from that of the nympha. The bases of the maxillae are coalesced so that they leave a nearly circular opening through which the base of the ligula is visible. The malae interiores are blade-like, very transparent. The malae exteriores long, well chitinized. The movable finger of the chelae (Fig. 21-23) bears an almost S-shaped broad and flat copulation-organ, provided with about three blunt teeth on its distal end and one blunt tooth on its inner side. The genu and tibia of leg 1 (Fig. 24) are distally provided with two little teeth. The femur of leg 2 (Fig. 25) has a strong thorn directed forward; the tibia a thumb-like apophysis directed backward; and the tarsus bears a little thorn distally, on the outer side, next to the praetarsus.

Female. Length about 450μ. Colour like that of the nympha and the male. Shape (Fig. 26) between those of the nympha and the male. Dorsal side. Distribution and number of the hairs exactly like those in the nympha and the male. On the ventral side (Fig. 27) we observe the coalesced sternal, lateral and meta-
podial shields, but here too the mentum is planted between an anteriorly directed prolongation of the sternal part and the jugular region. The geniti-ventral shield is nearly hexagonal; its three fore-margins follow the margins of the metapodial and sternal shields; its three hind-margins form distinct angles. The anal shield is nearly triangular. There are 8 hairs on the sternal shield, 2 between the genital and metapodial shields, 2 on the hinderbalf of the genital shield, two on the anal shield one on each side of the anus, and two between the genital and anal shields. Epistoma about the same (Fig. 28) as that of the male. Hypostoma (Fig. 29) with exterior malae abruptly broken distally, and sharp, nearly triangular inner malae. The bases of the maxillae leave a broad split, through which the base of the ligula is visible.

Habitat: Heliocopris bucephalus.
Patria: Java.

10. Key to the species of Pachylaelaps.

Nympha.
Only one nympha known. . . . P. minutus Oudms.

Nympha generans masculina.
$1\left\{\begin{array}{c}\text { Tarsus } 2 \text { distally with a strong } \\ \text { thorn right and left. . . P. siculus Berl. } \\ \text { Tarsus } 2 \text { ventrally tridenticulate } P . \text { pectinifer (G. et R. Can.). }\end{array}\right.$

Nympha generans feminina.
$1\left\{\begin{array}{l}\text { Geneti-ventral shield church- } \\ \text { bell-shaped P. ctenophorus Oudms. } \\ \text { Geniti-ventral shield otherwise 2. }\end{array}\right.$
Geniti-ventral shield more long
than broad P. siculus Berl.
2
Geniti-ventral shield more broad
than long P. pectinifer (G. et R. Can.).

Male.
$1\left\{\begin{array}{l}\text { Comb of epistoma sessil . . P. minutus Oudms. } \\ \text { Comb of epistoma with long } \\ \text { peduncle } 2 .\end{array}\right.$
$2\left\{\begin{array}{c}\text { Article } 4 \text { of palp ventrally with } \\ \text { big tubercle P. siculus Berl. } \\ \text { Article } 4 \text { of palp unarmed . P. pectinifer (G. et R. Can.). }\end{array}\right.$

Female.
$1\left\{\begin{array}{l}\text { Comb of epistoma sessil . . P. minutus Oudms. } \\ \text { Comb of epistoma with long } \\ \text { peduncle. } 2 .\end{array}\right.$
$2\left\{\begin{array}{c}\text { Genu and tibia } 2 \text { without tubercle } P \text {. pectinifer (G. et R. Can.). } \\ \text { Genu and tibia } 2 \text { with tubercle } \\ \text { ventrally. P. siculus Berl. }\end{array}\right.$

11. Key to the genera of Parasitinae.

Free in moss, decayed leaves, or else-
$1\left\{\begin{array}{r}\text { where; shields well chitinized. . . } 2 . \\ \text { Parasitic on vertebrates; skin soft, } \\ \text { scarcely shielded } 12 .\end{array}\right.$
$2\left\{\begin{array}{l}Q \text { ventral shield not fused with genital } 3 . \\ \varrho \text { ventral shield fused with genital, not } \\ \text { with anal } 11 .\end{array}\right.$
$3\left\{\begin{array}{l}\text { O genital shield triangular, anteriorly } \\ \text { pointed, fitted in incised sternum . Parasitus Latr. }\end{array}\right.$ O genital shield otherwise 4.
(q genital shield with rounded anterior margin, parallel to rounded posterior
4 margin of sternal shield 5.
O genital shield almost hexagonal, anteriorly truncated 10.
$5\left\{\begin{array}{l}\text { Legs } 1 \text { with ambulacrum } 6 . \\ \text { Legs } 1 \text { without ambulacrum } 9 .\end{array}\right.$
$6\left\{\begin{array}{c}\text { Dorsal shield in both sexes divided or } \\ \text { nearly divided into two parts. . . } 7 . \\ \text { Dorsal shield, even in nymphs undivided } 8 .\end{array}\right.$
$7\left\{\begin{array}{l}\sigma^{7} \text { movable finger of mandible about as } \\ \text { long as fixed one. Cyrtolaelaps Berl. } \\ \sigma^{2} \text { movable finger of mandible enorm- } \\ \text { ously developed, cultrate; fixed finger } \\ \text { very small Euryparasitus Oudms. }\end{array}\right.$
$8\left\{\begin{array}{l}\text { Jugular shields single; no accessory claws Neoparasitus Oudms. } \\ \text { Jugular shields donble;two accessory claws Hydrogamasus Berl. }\end{array}\right.$ 9 Only one genus Macrocheles Latr.
10 Only one genus PseudoparasitusOudms.
11 Only one genus Pachylaelaps Berl.
12 Only one genus Haemogamasus Berl.

12. Greenia Oudms., nov. gen.

(With Plate II, fig. 30-35)
As the male is unknown, it is not certain to which subfamily this insect belongs. As to the general habitus (Fig. 30), it may be a member of the subfamily of Parasitinae, or of the Laelaptinae. The undivided dorsal shield, the simple epistoma (Fig. 33), the elongate genital shield (Fig. 31), however, induce us to place it in the subfamily of Laelaptinae.

As the stigma misses a tubular peritrema (Fig. 31 and 35), the nearest related to Iphiopsis. But it differs from this genus in the presence of claws on the 1st leg.

Named in honor of Mr. Edward Ernest Grfen, Tea Planter, Eton Estate, Punduloya, Ceylon, investigator of Coccidae, discoverer of the symbiosis between Koptorthosoma and Greenia.

13. Greenia perkinsi Oudms., nov. sp.

(With Plate II, fig. 30-35).
Named in honor of Mr. R. C. L. Perkins, who first directed the attention of investigators to the symbiosis of Koptorthosoma and Greenia, discovered by Mr. E. E. Green of Ceylon.

Travelling nymph. Length $2500-3000 \mu$. Colour: the usual brownish-yellow of mites living on Bombus, etc.; yet the fronthalf of the mite is darker than the hinder-part; this is already visible to the naked eye.

Dorsal side (Fig. 30). It is protected by only one shield of a peculiar form. It is as it were formed by the fusion of two shields, an anterior and a posterior one; the former covering somewhat more than the fore-half, the latter being somewhat narrower, leaving the sides of the hinder-part bare. To the right and to the left the angles, formed by these two parts are as if eroded. The two eroded parts of one and the same individual are never alike. Sometimes it may even happen, that in the shield a part is weak (see Fig. 30 to the left), and sometimes quite the contrary is the case (see Fig. 30 to the right). The hairs are strong, short, curved, ranged in two or three rows along the sides; part of the dorsum is nearly destitute of hairs, whilst there are some small ones in the centre.

The ventral side shows us the following particulars (Fig. 31). The sternal shield is sub-semi-circular; its hind-margin showing erosion. The genital shield is long, with rounded bind-margin and indistinct fore-margin. The anal shield is subtriangular. Eight long bristles are planted in the space occupied by the sternal and genital shields. On the sides of the genital shield two long bristles. Mentum present.

Hypostoma (Fig. 32) dark coloured, with transparent broad and flat horns, and long feathered interior malae.

Epistoma (Fig. 33) triangular, transparent, with plain edges.
Chelae (Fig. 34) small; immovable finger with indistinct cheektooth, distinct, but small dog-tooth, and well developed sense-hair. Movable finger larger than the immovable one, similar to it. Flagellum only indicated by a few hairs.

Stigma without tubular peritrema, but provided with an oblong vestibulum, a kind of pan, the edges of which are directed toward the centre, and striated (Fig. 31). When we crush the mite and examine the stigma on its inner side (Fig. 35), the bottom
of the pan is roughly undulate, and a hole, the stigma itself is large and distinctly visible. I think we must consider this pan as a rudiment of a peritrema. I have not yet. had an opportunity to examine Iphiopsis mirabilis, but I think its singular »stigma", drawn by Berlese will prove to be of the same kind.

The legs (Fig. 30) are short, having nearly the breadth of the mite in length, and strong. The spines are short and strong; in the distal joints of the fore-legs they have a tendency to stand perpendicular on the axe of the limb, nay are sometimes directed backward. On the dorsal side of the proximal end of the genu 1 , and on the ventral side of the tarsus 1 and 2 there are two short chitinons bars or thorns. On the ventral side of the coxae 1,2 and 3 (Fig. 31) there are two short, more or less spool-shaped spines, on coxa 4 only one.

Habitat: the acarid-chamber in the first abdominal ring of $X y$ locopa (Koptorthosoma) tenuiscapa Westw.

Patria: Java, India.

14. Key to the genera of Laelaptinae.

$1\left\{\begin{array}{l}\text { Peritrema a pan } 2 . \\ \text { Peritrema tubular } 3 .\end{array}\right.$
$2\left\{\begin{array}{l}\text { Legs } 1 \text { with ambulacrum Greenia Oudms. } \\ \text { Legs } 1 \text { without ambulacrum Iphiopsis Berl. }\end{array}\right.$
$3\left\{\begin{array}{l}\text { Legs } 1 \text { with ambulacrum } 4 . \\ \text { Legs } 1 \text { without ambulacrum } 10 .\end{array}\right.$
$4\left\{\begin{array}{l}\text { Of femur } 4 \text { without spur } 5 . \\ \text { of femur } 4 \text { with spur } 9 .\end{array}\right.$
$5\left\{\begin{array}{l}\text { Mandibles chelate in both sexes. . . } 6 . \\ \text { Mandibles of } q \text { chelate, of } \sigma^{\top} \text { not. . } 8 .\end{array}\right.$
$6\left\{\begin{array}{l}\sigma^{7} \text { with sterni-geniti-ventri-anal shield. Laelaps C. L. Koch. } \\ \sigma^{7} \text { with anal shield }\end{array}\right.$ 0^{7} with anal shield separate 7.
$7\left\{\begin{array}{l}\text { Body not shouldered; epistoma with } \\ \text { long feathered mucro . , . . . Emeus Mégn. } \\ \text { Body shouldered; epistoma scarcely pointed Seiulus Berlese. }\end{array}\right.$

15. Liponyssus Klti.

In 1859 Kolenati formed the genera Liponyssus (Sitzsb. d. math. naturw. Cl. Kais. Ak. Wiss. Wien, Vol. 35, p. 172), Ichoronyssus (ibid. p. 173), Macronyssus (ibid. p. 178), Lepronyssus (ibid. p. 180), Steatonyssus (ibid. p. 186) and Pimelonyssus (ibid. p. 188). All the mites belonging to these genera, and drawn by him, have the external features of those which belong to the genus Leiognathus of Canestrini, 1885.

Liponyssus setosus, the type of the genus Liponyssus, may be a Laelaps, e. g. Laelaps arcualis (C. L. Koch) var. marginata (C. L. Koch), though it is not likely. But as long as it is only a supposition, we have no right to deny the relationship, or even the conformity, of Lyponyssus to Leiognathus.

All the species belonging to the above named genera and to Leiognathus, may provisionally be placed in one genus, viz. Liponyssus Klti, till the genus shall be broken up into two or more subgenera, or genera, in which case we shall have to observe that each of these genera has its proper type, which is inseparable from its genus.

The characters mentioned by Kolenati himself are too vague to be understood, and this author seems to have been a careful observer in some instances and a very inaccurate one in others. I don't think it superfluous to give the following key to Kolenati's genera:
a. Rückenschild einfach.
2.
b. Rückenschild zwei- oder dreiteilig 5.
$2\left\{\begin{array}{l}\text { a. Rückenschild nicht sculptirt } 3 . \\ \text { b. Rückenschild mit dicht schlangenschup- } \\ \text { piger Grundsculptur } 4 .\end{array}\right.$
(${ }^{a}$. An der Bauchseite zwischen den Füssen ein schuppig sculptirtes Schildchen . Liponyssus Klti.
b. An der Bauchseite zwischen den Beinen ein längliches, entweder länglich- oder seltener schuppig-sculptirtes Lederschildchen, welches der Quere nach gebrochen ist Ichoronyssus Klti.
$4\left\{\begin{array}{l}\text { a. An der Bauchseite zwischen den Hinter- } \\ \quad \text { füssen ein sehr kleines Schildchen . Macronyssus Klti. } \\ \text { b. An der Bauchseite ein kleines Schildchen Lepronyssus Klti. }\end{array}\right.$
$5\left\{\begin{array}{r}\text { a. Rückenschild durch eine Querteilung } \\ \text { gebrochen Steatonyssus Klti. } \\ \text { b. Rückenschild dreiteilig Pimelonyssus Klti. }\end{array}\right.$
Remarks. Ad $1 b$ and $5 b$. I am convinced that Kolenati's Pimelonyssus is based only on nymphs, and that his words: $»$ Rückenschild dreiteilig; die einzelnen Teile von verschiedener Grundsculptur" must be explained as follows: There are two dorsal shields, at some distance from each other, the space between these shields is wrinkled (see my figg. 36 and 38 on Plate II). This is confirmed by Kolenati's own words (l. c. p. 188): »der mittlere Teil dünn, lederig-wellig" and (l. c. p. 189): »der mittlere Teil am Discus mit 4 im Viereck stehenden runden Grübchen".

Ad $3 a$. Here Kolenati seems to have meant a sternal shield between the coxae 1 and 2 (in which case his mites were females) or amidst the coxae, in which case his mites were nymphae (see fig. 37).

Ad $3 b$. Kolenati has probably meant two shields: a sternal and a genital one; and his mites may have been females or males.

Ad. 4a. This must have been a genital shield, and his mites must have been females, but then Kolenati has overlooked the sterual shield.

Ad 4b. Here he has apparently meant a sternal shield. His mites may have been females or nymphae.

Ad $5 a$. His mites may have been females. A. o. the female of Liponysus musculi (C. L. Koch) has two dorsal shields.

16. Liponyssus rhinolophi Oudms., nov. sp.

(With Plate II, fig. 36 and 37)
Nympha. Length $450-560 \mu$. Colour white, or pale. Shape like that of the nymphae of other species of Liponyssus, e. g. Lip. musculi (C. L. Koch), but at once distinguished from it by the longer legs. Body well shouldered. Dorsal side (Fig. 36). It is protected by two larger and six smaller shields. The anterior shield is subpentagonal, with distinct shoulders, sinuated on its posterior margin, and with scaly surface. It protects more than one half of the dorsum, provided the nympha be not swollen. It bears 10 pair of hairs which are nearly placed in four longitudinal rows of 4 and 6 hairs each; the two marginal hairs of the posterior half of this shield are stronger than the others. The posterior dorsal shield is subpentagonal, with top turned forward, and scaly surface. Three pair of very small hairs are planted on its lateral margins; one pair in the centre and two pair of longer hairs on the posterior margin, of which the middle pair is the longer and projects far beyond the posterior margin of the abdomen. Between the two shields there are three pair of intermediate shields and four pair of hairs of which the anterior two are smaller. The soft part of the dorsum is wrinkled transversally and has nine pair of lateral hairs, which project far beyond the margin of the body.

Ventral side (Fig. 37). There is a wide scaly sternal shield with 3 pair of long hairs, an anal shield with the usual 3 hairs, 4 pair of intermediate hairs, 2 pair flanking the anal shield and 5 pair on the posterior margin of the abdomen. The peritrema is of the common nymphal type.

Legs. These are slenderer than those in any of the known species. Legs 1 and 2 are a little thicker than 3 and 4 . Tarsus 1 bears
two distinct tactile hairs. Coxa 2 (Fig. 37), is provided with a spur direct forward.

Habitat: Rhinolophus ferrum equinum.
Patria: Italy.

17. Liponyssus saurarum Oudms., nov. sp.

 (With Plate II, fig. 38-40, 42 and Plate III, fig. 41, 43-44)This species has already been mentioned in my paper entitled New List of Dutch Acari, 2nd Part, Parasitidae, concluded 8 April 1901, but not yet published. The mites were caught in large numbers on Lacerta agilis at Rotterdam, by Mr. K. Schütz. They may, however, have immigrated there on Lacerta viridis from Hungary.

Nympha. Length $525-650 \mu$. Shield 210μ. First leg 315μ. including the coxa. Colour pale when fasting, brown with numerous black spots when partly fed, bloodred when well fed. Shape oval, only somewhat shouldered when fasting. On the dorsal side (Fig. 38) the nymph shows a pentagonal anterior shield, scaly, and covering the anterior half of the dorsum. Behind this shield there are two pair of intermediate shields. Posteriorly a small, round scaly posterior slield protects the top of the abdomen. The anterior shield bears 20 hairs arranged symmetrically. The posterior shield bears two bristly hairs which are nearly wholly visible beyond the margin of the abdomen. The abdomen is finely wrinkled except in the shields, and provided with a few bristly hairs. The nymphs can be known at once, even when seen with low powers, by 4 hairs projecting beyond the margin of the abdomen. Ventral side (Fig. 39). The sternal shield is small, subheptagonal with top backward, between the coxae 4. The anal shield is small, oval, with top backward and with cribrum, like all the species of Liponyssus.

Male. Length $500-535 \mu$. Shield 500μ. First leg, seen from below, inclusive the coxa, 385μ. Colour like that of the nymph, though I saw none of a blood-red colour. Shape oval, with the top directed backward, slightly shouldered. Dorsal side (Fig. 40). It is
protected by one single scaly shield, provided with hairs, which are arranged exactly like those on the dorsal side of the nympha. Only the marginal hairs are stronger. The ventral side (Fig. 41) shows us two shields. One of them I may call a scaly sterni-genitiventral and the other an anal one. The former occupies the space between the coxae and nearly the foremost half of the venter, and shows the genital aperture in front and 12 little hairs. The anal shield like that of the nymph. The peritrema runs forward, passing the coxa 3 . The $\sigma^{\text {r }}$ are recognizable by their 8 or 10 hairs on the posterior margin of the abdomen.

Female. Length $670-790 \mu$. when fasting or scarcely fed, reaching 1300μ. when well fed. Shield 665μ.; first leg 700μ., including the coxa. Colour like that of the nymph. Shape long-oval, scarcely shouldered, with its top backward when fasting (Fig. 42); broadoval, not shouldered and with its top forward, when well-fed (Fig. 43). The dorsal side is hairy; the hairs are short, distinctly curved; there is one long scaly dorsal shield, the foremost third of which corresponds to the nymphal shield; the hairs on this shield have exactly the same number and places as the hairs on the dorsum of the nympha. The hindmost top of this shield corresponds to the posterior dorsal shield of the nympha. The dorsal shield gets a little narrower towards in the middle.

On the ventral side (Fig. 43) there are three shields distinct, vix. 1. a trapezoidal sternal shield, excavated roundly posteriorly, bearing four hairs and having a chitinous marking with a median point forward ; 2. a genital shield corresponding to the geniti-ventral portion of the large ventral shield of the male, distinct posteriorly, indistinct, rounded and longitudinally folded anteriorly; 3. the anal shield, closely resembling those of the nymph and the male, but larger. The peritrema runs forward almost passing the legs 1.

Of the legs of the nymph, the male and the female I can observe only that the femurs 1 and 2 are provided dorsally with two hairs, stronger and more spiny than the others, and diverging; and that the femurs 3 and 4 and genus 3 and 4 have one similar hair on their fore-side.

The epistoma, the hypostoma and the mandibles are of the usual type, like those of Liponyssus lacertarum (Contar.).

Habitat: Lacerta agilis, Lacerta viridis?, (in terrario). Patria: Netherlands, Hungary?

18. Key to the species of Liponyssus Klti.

> Nymphs.
$1\left\{\begin{array}{l}\text { With } 6 \text { intermediate shields . . . L. rhinolophi Oudms. } \\ \text { With } 4 \text { intermediate shields }\end{array}\right.$
$2\left\{\begin{array}{l}\text { Posterior dorsal shield half as wide } \\ \text { as anterior lacertarum (Contar). } \\ \text { Posterior dorsal shield much narrower L. saurarum Oudms. }\end{array}\right.$

Males.

1 With broom of bristles around anus L. corethroproctus (Oudms.) Without broom 2.
$2\left\{\begin{array}{l}\text { With two enormous curved spines } \\ \text { on each side L. uncinatus (Can.). } \\ \text { Without such unci 3. }\end{array}\right.$

Dorsal shield narrow, surrounded by
$3\left\{\begin{array}{l}\text { unprotected skin L. musculi (C. L. Koch). } \\ \text { Dorsal shield wide, occasionally sur- }\end{array}\right.$
rounded by unprotected skin. . 4.
$4\{$ Femur 3 with spur L. lacertarum (Contar).
F Femur 3 without spur. 5.
$5\left\{\begin{array}{l}\text { Peritrema passing the coxae 3. . L. saurarum Oudms. } \\ \text { Peritrema reaching coxae 1. . . L. albatus C. L. Koch. }\end{array}\right.$

Females.

$3\left\{\begin{array}{l}\text { Sternal shield trapezoidal } 4 . \\ \text { Sternal shield linear L. sylviarum (Can. et F'anz.) }\end{array}\right.$
(Dorsal shield wide, occasionally surrounded by narrow margin of unprotected skin. 5.
Dorsal shield narrow, surrounded by unprotected hairy skin. . . . 6 .
Coxa 2 with two spines, one for-
$5\left\{\begin{array}{l}\text { ward and one backward; coxae } 3 \\ \text { with } 2 \text { spines }\end{array}\right.$ with 2 spines backward . . . L. albatus (C. L. Koch). Coxa 2 with one spine forward . L. corethroproctus Oudms. Dorsal shield without constriction in the middle; peritrema reaching coxa 2 L. lacertarum (Contar). Dorsal shield with constriction in the middle; peritrema passing coxa 1 L. saurarum (Oudms.).

19. Subfamily Spinturnicinae.

The principal characteristic of this subfamily has always been the dorsal situation of the stigmata. This characteristic does not exist, as at least one of the species even of the genus Spinturnix von Heyden has ventral stigmata, as I will prove in a subsequent paper on Acari.

Therefore the diagnose of the subfamily should be: Body generally short and oval; abdomen generally very small; legs generally short and thick, sternum generally surrounded by the coxae; dorsum generally protected by only one shield, ventral side by two or more shields; stigmata generally dorsal; anal shield generally without cribum; no mentum.

As you will observe the only fundamental difference between Dermanyssinae and Spinturnicinae is in the presence or absence of the mentum.

What seems rather strange, Kolenati has - as far as I know - only ouce mentioned the stigma and the peritrema! In Vol. 35 of the Sitzb. d. math. naturw. Cl. d. Kais. Akad. d.

Wiss. Wien, 1859, p. 189 describing Pimelonyssus trichorion Klti. he says: »in der Richtung der stark hervortretenden Stigmenwulste...." etc. And yet, the length and the direction of the peritrema and the situation of the stigma in Spinturnicinae may be a good characteristic.

In no case can the direction of the hairs be a characteristic, as it is too often considered to be by Kolenati. This direction is very variable in the same species; it all depends on the amount of food, if not on other circumstances.

In no case can the situation of the stigma on the dorsal or ventral side always be a specific characteristic, as in fact it is ventral (in most species) in nymphae and females, dorsal in males; but when the nymphae and females are fasting, the stigma becomes quite lateral, nay even often dorsal. And when the stigma is in fact ventral, the observer is usually mistaken owing to the extraordinary transparency of the skin, so that with low powers the stigma always seems to be dorsal!

Erosionsgruben (Kolenati!) are pits or groups of small pits, which in living or dried, specimens are distincty visible through a pocket magnifying glass, when the animal is viewed a little obliquely. The general arrangement of these pits may be a very good characteristic for distinguishing species, but in no case can the number be used for this purpose, as Kolenati has too often done.

There are no bexapod larvae, but the newly born octopod mite is a nymphu, provided with stigmata and peritremata! By authors on Acari in general, or on Parasiticlae in general, or on Spinturnicinae in particular this nympha is always called a larva! As is well known, larvae are provided with 6 legs and have no tracheae! This phenomenon must be explained by the parasitism on flying mammals. Nymphae are stronger than larvae and more adopted to its manner of living. The phenomenon is similar to that of Pinnipeds, in which the newly born pups have their permanent dentition at once, whilst the deciduous dentition is rudimentary, never truly functional, and generally not persistent beyond the foetal stage of the animal.

The legs of the Spinturnicinae are provided with six rows of hairs, two rows on the dorsal side of the legs, two lateral rows and two ventral rows. The relative length of the dorsal hairs on the different joints of the four legs, is a good specific characteristic. Similarly the outer ventral row may have long hairs on some of the joints, very small ones on the others. As there are two pair of legs directed forward and two backward, we may speak of inner and outer rows.

As I have found back again Kolenati's Diplostaspis mystacinus and a new species of Periglischrus, I have read his paper carefully and come to the conclusion, that his genera and species are easily distinguished.

20. Key to the genera of Spinturnicinae.

${ }_{2}$ Legs slender; mites Dermanyssus-like: Ptilonyssus Berl. et Trt. $2\left\{\begin{array}{c}\text { Legs short and thick; mites Spin- } \\ \text { turnix-like }\end{array}\right.$
$3\left\{\begin{array}{l}\text { All the legs subequal in thickness } .4 . \\ \text { Legs } 1 \text { as thick again as the others } 9 .\end{array}\right.$

One dorsal shield 6.
O with genital shield. Periglischrus Klti. Q without genital shield. Tristaspis Klti.
$6\left\{\begin{array}{l}\text { With sternal shield } \\ \text { Without sternal shield }\end{array}\right.$ 7.

Dorsal shield without oval central field Spinturnix von Heyden 7 ($=$ Celeripes Mont., $=$ Pteroptus Duf., incl. Tinoglischrus Klti., and Diplostaspis Klti.)
Dorsal shield with oval central field Heterostaspis Klti.
8 Only one genus Monostaspis Klti.
9 Only one genus Meristaspis Klti.

> All the legs equal in size, provided
> with claws and sucker Sternostoma Rerl. et Trt. Legs 1 very thick, without sucker . Ancystropus Klti.

21. Uropoda javensis Oudms., nov. sp.

(With Plate III, fig. 45-48)
Uropoda javensis is closely related to Uropoda krameri Can.
Length of male 595μ., of female 630μ. Colour a dark brownishred. Form oval.

Fig. 45 shows us a female seeu dorsally. The dorsal side is quite polished, with numerous fine hairs. Near each hair there is a dull patch, which when seen with low powers, resembles a pore. The median shield is distinct, only an teriorly coalesced with the circumjacent ring formed by the fusion of the lateral and posterior shields.

Fig. 46 and 47 represent the ventral sides of female and male. Sternal and anal shields coalesced; metapodial shields distinct. The stigma is small; the peritrema runs obliquely forward and outward, till it reaches the margin just before the chitinous ridge which separates the pits for the third and second legs, then it bends and follows the margin till it reaches the pit for the first leg. The tectum ends in a broom of spines.

Of the chelae (Fig. 48) the movable finger is crooked and scarcely longer than the immovable one.

The genital aperture of the male (Fig. 47) is nearly circular and situated on a line running between the coxae 2 and 3 . The coxae of the first pair bear chitinous knobs on their outer side.

The genital aperture of the female (Fig. 46) is very large, occupying nearly the whole space between the coxae. The coxae of the first pair are not so knobby as those of the male.

The tarsus of the first pair of legs is nearly cylindrical; those of the other legs taper gradually toward the end. All the femurs bear a longitudinal chitinous blade on their ventral side.

Habitat: a bale of kètan (a kind of rice).
Patria: Java.

22. Key to the species of Uropoda Latr.

dian dorsal shield ornated with chit-	
	Median dorsel shield without such ridges 4
	nterior part of abdomen simulates a cephalothorax. U. berlesiana Be o simulation of cephalothorax . . 3.
	o such arrangement. U. laminosa
$4\left\{\begin{array}{c} \text { Anterior margin with chitinous mem- } \\ \text { brane } 5 . \\ \text { No such membranes } 6 . \end{array}\right.$ Body subpyriform; membranes extend-	
$5\left\{\begin{array}{c}\text { ing to legs } 4 \text {. } \\ \text { Body broad-oval; membranes entending } \\ \text { to legs 2 }\end{array}\right.$	
	$\left\{\begin{array}{l}\text { Dorsum concave; margins upward . U. carinata Berl. } \\ \text { Dorsum convex; margins not upward } 7 .\end{array}\right.$
	$\left\{\begin{array}{c} \text { Anal shield distinct, separate fromı } \\ \text { ventral shield. } 8 . \end{array}\right.$
$8\left\{\begin{array}{c} \text { Sternal shield posteriorly denticulate } ; \\ \text { anal shield crescent-shaped . . . } 9 . \\ \text { Sternal shield indistinct, or posteriorly } \\ \text { not denticulate } 10 . \end{array}\right.$	
	$\left\{\begin{array}{l} \text { Dorsal shield hairy. } \\ \text { Dorsal shield hairless } \end{array}\right.$
$10\left\{\begin{array}{l} \text { Anal shield su } \\ \text { Anal shield la } \end{array}\right.$	
	Posterior dorsal shield small; body hairy U. obscura (C Posterior dorsal shield crescent-shaped; body hairless. U. tecta Kra

$13\{$ Dorsal shield rough, punctulate 14.
Dorsal shielḋ polished 16.
14 Dorsal shield surrounded by broad margin U. elegans Kram. Dorsal shield without margin 15.
$15\left\{\begin{array}{c}\text { Margin. and dorsal hairs minute, smooth } \\ \text { Marginal and dorsal hairs clavate and } \\ \text { plumose }\end{array}\right.$ U. ovalis (C. L. Koch). plumose U. patavina Can.
(Metapodial shields fused with ventri- 16 anal shield 17.
Metapodial shields distinct 20.
$17\left\{\begin{array}{l}\text { Anus terminal } \\ \text { Anus ventral. }\end{array}\right.$ U. lagena Berl. 18.
$18\left\{\begin{array}{l}\text { Two little verti } \\ \text { No such hairs }\end{array}\right.$ U. tridentina Can. 19.
$19\left\{\begin{array}{l}\text { Legs } 4 \text { in the middle of the body }\end{array}\right.$ U. hypopoides Berl.(Four hairs longer than body posteriorly
20 on ventral shield U. longiseta Berl. No such hairs 21.
(Median dorsal shield surrounded by 21 marginal shield except anteriorly 22.
Only one dorsal shield U. campomolendina Berl.
$22\left\{\begin{array}{r}\text { Metapor } \\ \text { angle }\end{array}\right.$ U. Krameri Berl.
Metap. sh. with rounded post. angle. U. javensis Oudms.
23. Cillibano heliocopridis Oudms., nov. sp.
(With Plate IIl, fig. 49-52)

Deutonympha. Length 434-525 μ. Colour pale. Shape flat, somewhat convex dorsally; circumference broad oval, subheptagonal. The dorsal side (Fig. 49) is perfectly smooth, hairless, polished, only about 40 pores are arranged symmetrically, of which 14 at about equal distances follow the margin. All the dorsal shields have fused into a single one. Ventral side (Fig. 50). The most char-
acteristic features are: 1 . The sterni-genital shield is long and occupies the space between the legs and the small ventri-anal shield; it is perfectly smooth, polished, hairless, and has 12 large pores and in the middle numerous small pores. 2. The tubular peritrema shows two wrinkles, one between the pits of legs 3 and 2, and one ketween the pit of leg 2 and the coxa 1 . Moreover the former wrinkle has a blind apendage directed outward, a fact not yet met with. Fig. 51 shows us the palp; Fig. 52 represents the tarsus 1 , with sensorial hairs.

Habitat: Heliocopris bucephalus.
Patria: Java.

24. Key to the species of Cillibano, v. Heyd.

$1\left\{\begin{array}{l}\text { Posterior part of dorsum unprotected C. splendidus (Kram.). } \\ \text { Posterior part of dorsum protected. 2. }\end{array}\right.$
$2\left\{\begin{array}{l}\text { Dorsum concave C. venustus (Berl.). } \\ \text { Dorsum convex } 3 .\end{array}\right.$
$3\left\{\begin{array}{c}\text { Median dorsal shield surrounded by } \\ \text { hairy marginal ring-shield . . . } 4 . \\ \text { All the dorsal shields fused, hairless } 6 .\end{array}\right.$ $4\left\{\begin{array}{l}\text { Body circular C. cassideus (Herm.). } \\ \text { Body nearly oval. } 5 .\end{array}\right.$ $5\left\{\begin{array}{l}\text { Tarsus } 1 \text { distally with a hair, ending } \\ \text { in a triangle C. vegetans (Dug.). } \\ \text { Tarsus } 1 \text { without such hair C. minor (Berl.). }\end{array}\right.$ 6 Peritrema curved outward. . . . C. romanus (G.etR. Can.). Peritrema complicate C. heliocopridis Oudms.

25. Camisia horrida, biverrucata, berlesei, nicoletii, and fischeri.

When I compared my collection of Camisia with the figures in Michael's British Oribatidae, v. 2 a second time, I was struck with the resemblance of the figure of Camisia biverrucata (C. L. Koch) to that of my C. fischeri. I observed that the two protub-
erances of the abdomen had only one feathered hair; the other so called feathered hair, delineated by me in the Tijdschrift voor Entomologie, vol. 43, p. 109, tab. 5, Fig. 1, is nothing but a feather-shaped exsudation of wax on one side and the removed broken feather of the corner of the abdomen on the other side (my figure does not show these feathers on the corners). Further Michael's drawing shows a little hair behind the central depression, on each side. I have found it in my specimen too.

Observations:

1. Just as I have been mistaken in the interpretation of the number of hairs of the protuberances of the abdomen, others may have been so too. Yet this supposition is not a proof that Nicolet and Beriese were wrong in delineating their Nothrus horridus with two hairs on the protuberances. And therefore we are obliged to adopt their species, but to change their names, as I already did (Tïdschrift voor Entomologie, vol. 43, p. 109 and 110).
2. The wrinkles in the skin of my specimen are arranged otherwise than in Mrchael's. In my specimen the edge of the central depression is anteriorly indistinct; and the depression is not divided by a transversal ridge. Yet I consider my specinen perfectly identical to Michael's Camisia biverrucata (C. L. Koch). In vol. 43, p. 111, of the Tijdschrift voor Entomologie I said: »I believe that these ridges are of no great value, and that they will disappear the more the animal is fed. But l have no material to settle the question." Of this there can now be hardly any doubt.
3. So contrary to my opinion expressed in the above mentioned volume, I now consider Nothrus horridus of Nicolet (Arch. Mus. Par. vol. 7, tab. 31, Fig. 1) identical to Nothrus horridus of Berlese (Ac. Myr. Scorp. Ital. 17, 1), but I have no reason to doubt the identity of this species to Nothrus horridus of Hermann and Michael, and to Nothrus biverrucatus (C. L. Koch) of Michael. It is true that the shape of the pseudostigmatic organ of the species in question corresponds to that of biverrucatus, but the presence of two feathered hairs on the abdominal apophyses,
and the rhomboid figure on the cephalothorax correspond neither to those of biverrucatus nor to those of horridus.

I therefore adopt Camisia horrida (Herm.), Camisia nicoletii Oudms. (=horrida Nic., =horrida Berl.), and Camisia biverrucata (C. L. Koch).

Consequently Camisia berlesi Oudms. and Camisia fischeri Oudms. do not exist.
26. Emendation in the key to the species of Camisia.
(Das Tierreich, Oribatidae, p. 69).
Central projection with tubercles at cor-
$16 \begin{gathered}\text { ners, each bearing one hair . . . } \\ \text { Central projection with tubercles at cor- }\end{gathered}$
ners, each bearing two hairs C. nicoletii Oudms. $16 a=16$ of the table.

27. Eremaens confervae Schrank.

In the Tijdschrift voor Entomologie, vol. 39, p. 175, I mentioned my capture of a mite, living in water amongst Confervaceae, which I considered to be identical to Acarus confervae of Schrank. On p. 177 I explained the reasons on which I based my supposition. I maintain my suggestion.

On p. 176 I wrote: »Albert D. Michael in his British Oribatidae, London, 1884, vol. I, p. 57, speaks of an aquatic Notaspis, which he calls Notaspis lacustris. I am not aware that he has described and drawn this species elsewhere. Yet I am fully convinced, that Schrank's Acarus confervae and Michael's Notaspis lacustris are one and the same species."

It is true: that at that time, April 1896, I was not aware of the existence of Michael's vol. II.

In January 1897 I wrote Mr. Michael in consequence of some remarks he had made in a letter, and stated among other things that I had not yet been able to consult his vol. II.

In reply I received a most courteous letter and a copy of the
above mentioned second part of his valuable work on British Oribatidae.
My opinion was changed, and I thought Notaspis lacustris (Michael) was altogether different from my Eremaeus confervae (Schrank), but being otherwise engaged at the time, I did not publish it.

In July 1898 appeared Michael's Oribatidae, a number of Das Tierreich. This induced me to revise my collection. The first part of a New List of Dutch Acari appeared 5 September 1900 in the Tijdschrift voor Entomologie, vol. 43, p. 150-171, in which I pointed out satisfactorily, I think, the necessity of admitting two species, Eremaeus confervae (Schrank) and E. lacustris (Michael).

In Michael's Oridatidae (Das Tierreich), p. 50, sub Notaspis lacustris, I read not without surprise: »Oudemans identifies this species with Acarus confervae Schrank, but does not give any reason for doing so, except habitat." Now, this assertion is not quite true. I described and drew a species which I considered to be the same as Schrank's Acarus confervae, and expressed a supposition that Michael's Notaspis lacustris were the same species. Michael could immediately observe, in comparing my drawings and description with his, that I had been mistaken, and that my species, called by me Eremaeus confervae Schrank, was quite different from his lacustris. Why then has he not adopted it in his Oribatidae (Das Tierreich)?

I repeat here, that my description and drawing of the pseudostigmatic organ, as given in vol. 39, p. 179, were wrong; I gave a better description of it in vol. 43, p. 164.

From Dr. A. R. Spoof of ${ }^{\circ}$ Abo, Finland, I received 5 specimens of the species in question. They are exceedingly light coloured. They have all their pseudostigmatic organs. They have all the lamellae and the pseudostigmata exactly as I have described and figured them. But they differ from the Dutch specimens in having long hairs on their abdomen. These hairs stand exactly on the spots where I have delineated points in my figure ($T i j d s c h r . v$. Entom. vol. 39, tab. 10, Fig. 2). It is remarkable that Dr. Spoor found them in subsaline algae.

©s. Scutovertex spoofi Oudms. = bilineatus Michael.

I have received from Dr. A. R. Spoof, of ${ }^{\circ}$ Abo, Finland, 2 larvae, 27 nymphae and 46 adults. With this material I am able to rectify my communication about this insect published in the Tïjdschrift voor Entomologie, vol. 43, p. 112.

When in 1899 I determined my single specimen, received from Dr. Spoof in 1896, I used the table on p. 29 of Das Tierreich, Oribatidae. With this table, such as it is, my species with tridactyle claws and without pseudostigmata and pseudostigmatic organs could not but be new to science! and I called the species Scutovertex spoofi. And a Camisia-like nympha, which Dr. Spoof indicated as the young of it was took by me for its young one.

Being all at once provided with good material I immediately observed that my former nympha did not in the least correspond to any of the 27 real nymphae!

My new nymphae at once reminded me of a figure in Michael's British Oribatidae. Indeed my species proved to be Scutovertex bilineatus Michael. Among the 46 adult ones there was only one specimen, transparent enough to enable me to observe distinctly the two ridges on the back (not delineated in my figure in the Tijdschr. v. Entom., vol. 43, tab. 5, Fig. 6).

Michael's drawing (British Oribatidae, vol. 2, tab. 54, Fig. 8) shows monodactyle claws, the table (key) to the species of Scutovertex in his British Oribatidae vol. 2, p. 567, and that in his Oribatidae (Das Tierreich), p. 29, mentions monodactyle claws; in kis description of the legs in his British Oribatidae, vol. 2, p. 572 and in his Oribatidae (Das Tierreich), p. 29, he calls them monodactyle. And yet my specimens are distinctly tridactyle. It seems that the lateral claws of British specimens are less developed, for Michael describes them (British Oribatidae vol. 2, p. 572) as follows: »but there is a minute projection at each side of the claw, and two longish, fine hairs, sharply hooked at their distal ends, on either side of each claw." And yet Michael has delineated
these "fine" bairs (British Oribatidae, vol. 2, tab. 54, Fig. 13, $14,15,16)$ so coarse, that they resemble heterodactyl claws rather than "fine hairs".

So I will subjoin a new key to the species of Scutovertex in which the claws of Sc. bilineatus are not referred to.

29. Key to the species of Scutovertex Michael.

$1\left\{\begin{array}{l}\text { Lam. narrow, or only thickened bars, } \\ \text { or ridges, or scarcely visible . . . } 2 . \\ \text { Lam. broad, horizontal; C. lam. long, } \\ \text { large, with rounded ends } 8 .\end{array}\right.$
$2\left\{\begin{array}{l}\text { With psstg. and psstg. org. } 3 . \\ \text { Without psstg. and psstg. org. . . . } 7 .\end{array}\right.$
LLam. blade on edge.
S. ovalis (Berl.).

3 Lam. and Trlam. thickened bars, or ridges, or scarcely visible 4.
$4\left\{\begin{array}{c}\text { No indentations in post. margin of } \mathrm{Abd} .5 . \\ \text { Two indentations in post. margin of } \mathrm{Abd} . \\ \text { aspine on each } 6 .\end{array}\right.$
(Dors. of Abd. slightly curved . . . S. corrugatus Michael.
5 Dors. of Abd. with arched centre and
broad, flat, peripheral band . . . S. maculatus Michael.
6 Only one species. S. harioti Michael.
7 Only one species. S. bilineatus Michael.
$8\left\{\begin{array}{l}\text { Ung. trid. S. sculptus Michael. } \\ \text { Ung. monod. } 9 .\end{array}\right.$
$9\left\{\begin{array}{l}\text { Abd. without wing-like margin . . . S. caelatus Berl. } \\ \text { Abd. with wing-like margin on shoulder S. velatus (Michael). }\end{array}\right.$
30. Scutovertex spoofi, nympha, $=$ Hermannia convexa (C. L. Koch), nympha.

As stated above, my nymph, described and drawn in the Tijdschr. v. Entom. vol. 43, p. 113 and 114, tab. 5, Fig. 11-16, is nothing but a nymph of Hermannia convexa (C. L. Koch)
which has become wrinkled owing to its being preserved in dammarbalsam by Dr. A. R. Spoof.

It is a fact worth noting that this nymph is caught alive in subsaline water in the spawn of Limnaea stagnalis.

31. Notaspis alatus Herm.

An individual sent to me by Dr. A. R. Spoof, from ${ }^{\circ}$ Abo, is a real alatus Herm., with short and clavate pseudostigmatic organs. They are already discernable as such through a common pocket magnifying glass.

I also received a specimen caught at Apeldoorn (summer-Residence of our Queen), with short and clavate pseudostigmatic organs.

32. Trichotarsus koptorthosomae Oudms., nov. sp. (With Plate III, fig. 53 and 54)

Hypopus. Length about $200-240 \mu$. The creature is related to Trichotarsus xylocopae Dormad. Dorsal side (Fig. 53). The anterior crescent-shaped portion shows about ten wrinkles and 4 pair of strong bristles. These are stronger than those of T. xylocopae. The posterior round or oval portion is protected by a shield which is very finely punctured, without showing the known marking of Trichotarsus osmiae (Duf.), etc. The dorsum, however, shows a characteristic chitinization. In the posterior half of the shield there is a figure like a pair of sugar-tongs. Between the tongs the dorsum is concave, as it is before and on either side of the tongs. The posterior margin of the abdomen is strongly chitinized and brown coloured. In connexion with these strong chitinizations the posterior edge of the abdomen has a median projection and a concavity on either side of it. The projection bears two little hairs.

Ventral side. The epimera 1 meet in the median line, forming an Y. Those of the 3d leg are bent rectangularly. The suckerplate is small, does not extend beyoud the posterior edge of the abdomen, and bears 8 suckers, of which the foremost pair are small, situated one ou each side of the anus; two large ones are placed more
backward, whilst four smaller ones of nearly equal size form a third transversal row. Behind the sucker plate the projection of the abdomen bears two hairs.

Legs. Legs $1-3$ bear robust claws, leg 4 is clawless. Tarsi 1 and 2 are ornated by two lanceolate hairs, one on each side. The outer lanceolate hair is larger than the inner, and shows a nerve. Tarsus 1 has a tactile hair extending beyond the claw; and tibia 2 one projecting even beyond the top of the largest lanceolate hair. Tarsus 3 has only one lanceolate hair, one common hair and one tactile hair as long as the leg 3. Leg 4 ends in a single long hair, $320-380 \mu$. It is true, that at the proximal end of this hair two minute hairs of about 3μ. length are observable; most propably, however, they have no specific value.

Habitat: In the acarid-chamber of the first abdominal ring of Xylocopa (Koptorthosoma) tenuiscapa Westw.

Patria: India, Java.

33. Key to the species of Trichotarsus Can.

Hypopi.

$$
8
$$

Tarsus 1 without lanceolate hairs Tr. xylocopae (Dounad).
Tarsus 1 with 2 lanceolate hairs Tr. koptorthosomae Oudms.
$9\left\{\begin{array}{l}\text { Tarsi } 1-3 \text { without lanceolate hairs } T r \text {. biflis Can. }\end{array}\right.$
TTarsi 1-3 with 4 lanceolate hairs Tr. japonicus Oudms.

34. Glycyphagus ornatus Kram.

Kramer (Zeitschr. d. ges. Naturw., vol. 54, p. 437) says of this species: "Das Tarsalglied des vierten Fusspaares trägt unten in der Mitte des innern Seitenrandes zwei kurze behaarte Borsten." I fail to observe these hairs. Kramer does not say whether the tarsi are hairy or not. They are richly hairy, as in Glycyphagus spinipes (C. L. Koch).

Berlese (Ac. Myr. Scorp. Ital. 29, 3) describes the tibia of the first and second pair as bearing a pectiniform apophysis, but he does not mention that this peculiarity occurs only in the male. The tarsus he describes as: »setis destitutus, nudus." He seems to have drawn a hermaphrodite, for the pectinated hairs on the tibiae 1 and 2 are male, and the copulation-tube is a female characteristic.

My specimen has the characteristic bifurcated and feathered hair and the oblong pseudostigma between the coxae 1 and 2.

The skin is finely granulated.
Nywph. Here I observe no hairs on the tarsi, and only one feathered hair in the middle of the underside of the tarsus 4.

Query. Have Kramer and Berlese described the tarsi of the nymph, instead of those of the adult?

35. Labidophorus Kram.

As the genera of Tyroglyphinae have each their special and characteristic form of hypopus, we are obliged to adopt the genus Labidophorus of Kramer, because its hypopus has two claspers on the ventral side of the posterior abdomen whilst it has no suckers. The only species hitherto described is Labidophorus talpae Kram. (Glycyphagus krameri Michael).
36. Key to the genera of Tyroglyphinae.
1 \{ Mandibles chelate 2.
$2\left\{\begin{array}{l}\text { Maxillar palp common } 3 .\end{array}\right.$
Maxillar palp clavate distally 22.
$3\left\{\begin{array}{c}\text { Claws of legs } 1 \text { and } 2 \text { distal . . . } 4 . \\ \text { Claws of legs } 1 \text { pedunculate and inserted } \\ \text { on side of tarsus } 21 .\end{array}\right.$
40^{0} without anal suckers 5.
10^{7} with anal suckers 12.
$5 \int^{\circ}$ without genital suckers Hericia Can.
${ }^{5}$ १ $甲$ with genital suckers 6 .
$6\left\{\begin{array}{l}\text { without copulation-tube } 7 .\end{array}\right.$
¢ with copulation-tube 11.
$7\left\{\begin{array}{l}\text { Cephth. and Abd. separate Saproglyphus Berl. } \\ \text { Cephth. and Abd. fused } 8 .\end{array}\right.$
$8\left\{\begin{array}{l}\text { Epimera } 2 \text { free } 9 . \\ \text { Epimera } 2 \text { joined to epimera } 1 .\end{array}\right.$
$9\left\{\begin{array}{c}\text { Edge of vertex common Dermacarus Hall. } \\ \text { Edge of vertex with chitinous band with } \\ \text { a sucker on each end. Trichotarsus Can. }\end{array}\right.$
10 Only one genus Carpoglyphus Robin.
$11\left\{\begin{array}{l}\text { Cephth. common Glycyphagus Hering. } \\ \text { Cephth. with } 2 \text { high ridges. . . . Labidophorus Kram. }\end{array}\right.$
$12\{$ Cephth. and Abd. separate 13.
Cephth. and Abd. fused 20.
$13\left\{0^{7}\right.$ legs 1 common 14.
σ^{7} legs 1 thick and armed with thorn 19.
$14\left\{\begin{array}{l}\text { Anus and anal suckers common . . . } 15 . \\ \text { Anus and anal suckers surrounded by } \\ \text { chitinous ring } 18 .\end{array}\right.$
$15\left\{\begin{array}{l}\text { Legs } 4 \text { of } \sigma^{7} \text { without suckers } 16 .\end{array}\right.$
Legs 4 of δ^{7} with suckers 17.
$16\left\{\begin{array}{l}\delta^{7} \text { Abd. common } \cdot \text {. . . . Hypopus Duj. } \\ \sigma^{\prime} \text { Abd. with post. chitinous plate . . Histiogaster Latr. }\end{array}\right.$

17 Only one genus. Tyroglyphus Latr.
18 Only one geuns. Mealia Trt.
19 Only one genus. Aleurobius Can.
20 Only one genus. Chortoglyphus Berl.
21 Only one genus. Lentungula Mich.
22 Only one genus. Nodipalpus Karp.
23 Only one genus. Anoetus Duj.

37. Hypopus minutus Oudms., nov. sp.

(With Plate III, fig. 55 and 56)
Nympha. As nymphae of Hypopus have exactly the same features as the adults, except that they have no genital apparatus, I don't hesitate to describe this nympha and give it the above name, by which I mean to say that even the adult must be a minute creature.

Length 168μ. Colour white, with straw-coloured hue, and white legs. Stature robust, resembling that of Hypopus spinitarsus (Herm.) (Rhizoglyphus echinopus (Fum. et Rob.)). On the dorsal side (Fig. 55) the demarcation between the head and the thorax, and that between the thorax and the abdomen are distinct. There are only two cervical hairs, two posterior thoracal hairs, which are very long, two shoulder-hairs, which are planted nearly midway between the anterior and posterior margins, and three pair of marginal hair. On the ventral side (Fig. 56) we observe the maxillae and the palps, not remarkable for any particulars; the anus, nearly terminal, flanked by two long hairs bent sideward and forward. These hairs are characteristic. Legs. The legs 1 and 2 are much stronger than 3 and 4, as in Hypopus spinitarsus (Herm.). The tarsi 1 and 2 are provided with a little olfactoric hair; the tibiae 1 and 2 and the tarsi 3 and 4 with a tactile hair.

Habitat: The creature was found by Prof. Dr. K. Knuth, on Xylocopa (Koptorthosoma) tenuiscapa Westw., in Dec. 1898 and by Mr. S. A. Poppe on Vesperugo serotinus.

Patria: Java, Germany.

38. Key to the species of Hypopus.

39. Tyroglyphus trifolimm Oudms., nov. sp.
(With Plate III, fig. 57-61)
Nympha. Length about 430μ. Shape like that of Tyroglyphus siro Latr. Colour white, opaque. Dorsal side (Fig. 57) polished, with distinct but only superficial demarcation between cephalothorax and abdomen. The species is specially characterized by six robust hairs as long as the abdomen. Two are situated on the cephalothorax, directed forward and outward; two on the shoulders, directed sideward, and two on the posterior margin of the abdomen, directed backward and outward. Two thick vertical bristles are directed forward. Ventral side (Fig. 58) polished; no demarcation visible. The epimera 1 form an Y. Anus a longitudinal split, flanked by two strong hairs, directed backward and as long as the breadth of the abdomen. Legs 1,2 and 3 ending in a tibia with long tactile hair, and a tarsus with three hairs with leaf-like distal end, resembling a clover-leaf (Fig. 59, 60). The tarsus 4 has only one hair like this (Fig. 61). Every tarsus ends in a strong claw and a minute sucker.

Habitat: Heliocopris bucephalus.
Patria: Java.
40. Key to the species of Tyroglyphus Latr.
$1\left\{\begin{array}{l}\text { Femur } 4 \text { crooked. T. diversipes Karp. } \\ \text { Femur } 4 \text { straight. } 2 .\end{array}\right.$

EXPLANATION OF PLATES I－III

Fig． $1-9$ ．
» $10-12$ ．

Plate I

Neoparasitus ondemansi，n．sp．
Pachylaelaps ctenophorus，n．sp．，nympha gene－ rans feminina．
＊13－16，18－19，21－25．Pachylaelaps minutus，n．sp．

PLATE II

＞ $17,20,26-29$ ．
» $30-35$ ．
＞ $36-37$ ．
》 $38-40,42$ ．
－ $41,43,44$ ．
》 $45-48$ ．
》 49－－52．
＊ $53-54$ ．
ค $55-56$ ．
» $57-61$ ．

Pachylaelaps minutus，n．sp．
Greenia perkinsi，n．sp．，travelling nymph．
Liponyssus rhinolophi，n．sp．，nympha．
Liponyssus saurarum，n．sp．
PLATE III
Liponyssus saurarum，n．sp．
Uropoda javensis，n．sp．
Cillibano heliocopridis，n．sp．，deutonympha．
Trichotarsus koptorthosomae，n．sp．，hypopus．
Hypopus minutus，n．sp．，nympha．
Tyroglyphus trifolium，n．sp．，nympha．

[^0]: 1) The First Series entitled "Notes on Acari", appeared 15, I, 1897 in the Tijdschrift voor Entomologie, vol. 39, p. 175-187. - The Second Series, entitled "Further Notes on Acari', appeared 5, IX, 1900, in the Tijdschrift voor Entomologie, vol. 43, p 99128. - These Series are independent from one another.
